greatest common divisor - definizione. Che cos'è greatest common divisor
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è greatest common divisor - definizione

LARGEST DIVISOR OF TWO INTEGERS OR POLYNOMIALS
Highest common factor; Greatest common denominator; Greatest common factor; Greatest Common Divisor; Common Factor; Highest common denominator; Common factor; Highest common divisor; Greatest Common Factor; NWD (mathematics); Q B Over M; B Q Over M; Common divisor; Greatest common measure
  • A 24-by-60 rectangle is covered with ten 12-by-12 square tiles, where 12 is the GCD of 24 and 60. More generally, an ''a''-by-''b'' rectangle can be covered with square tiles of side length ''c'' only if ''c'' is a common divisor of ''a'' and ''b''.
  • ellipses]] (i.e. omission of dots due to the extremely high density).
  • Animation showing an application of the Euclidean algorithm to find the greatest common divisor of 62 and 36, which is 2.

greatest common divisor         
<mathematics> (GCD) A function that returns the largest positive integer that both arguments are integer multiples of. See also Euclid's Algorithm. Compare: {lowest common multiple}. (1999-11-02)
Greatest common divisor         
In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted \gcd (x,y).
highest common factor         
¦ noun the highest number that can be divided exactly into each of two or more numbers.

Wikipedia

Greatest common divisor

In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted gcd ( x , y ) {\displaystyle \gcd(x,y)} . For example, the GCD of 8 and 12 is 4, that is, gcd ( 8 , 12 ) = 4 {\displaystyle \gcd(8,12)=4} .

In the name "greatest common divisor", the adjective "greatest" may be replaced by "highest", and the word "divisor" may be replaced by "factor", so that other names include highest common factor (hcf), etc. Historically, other names for the same concept have included greatest common measure.

This notion can be extended to polynomials (see Polynomial greatest common divisor) and other commutative rings (see § In commutative rings below).